PFAS Update

City of Cambridge Water Board Meeting

May 10, 2022

OUTLINE

PFAS Background and regulations Cambridge PFAS results Treatment for PFAS Removal in Drinking Water **Next Steps Questions/Discussion**

PFAS Background and regulations

What are PFAS?

Per- and Poly Fluoro Alkyl Substances

A group of persistent synthetic compounds used to make fluoropolymer coatings and products that resist:

```
HEAT
GREASE
OIL
STAINS
WATER
```

Characteristics

Hydrophobic & Lipophobic (Surfactant Properties)

Chemically &

Thermally Stable (LOW REACTIVITY)

STRONG C-F Bonds

Water Soluble

PFAS in Manufactured Products

They were once thought of as a "miracle substance" especially for commercial applications such as:

- -Stain & water-resistant fabrics
- -Non-stick products & coatings
- -Polishes
- -dental floss

-cosmetics

-firefighting foams

-fast food packaging

-waxes

Early History of PFAS

- Invented in the 1930s
- First produced by 3M in 1949
- Approved for food packaging in 1967
- Production of aqueous film forming foams (AFFF) increased in the late 1960s
- 2002 3M voluntarily phases out long chain PFAS (PFOS and PFOA)

GORE-TEX

Other Industrial Sources

- Facilities using or storing aqueous film forming foams (AFFF)
 - Airports
 - Oil refineries
 - Fire training facilities
 - Fire stations
- Manufacturing air emissions
- Chrome plating
- Other areas where detected:
 - Landfill leachates
 - Wastewater
 - Biosolids

PFAS Analysis

 Part per trillion (ppt) = nanogram per liter (ng/L) = 1/1000th of a part per billion (ppb)

1 part per trillion (ppt)

IS EQUIVALENT TO A SINGLE DROP OF WATER IN

20 olympic-sized swimming pools

Courtesy of https://www.michigan.gov/documents/pfasresponse/1ppt is Equal to 1 Drop of Water in 20 Olympic Swimming Pools 664966 7.pdf

PFAS Maximum Contaminant Level (MCL)

 Massachusetts Department of Environmental Protection (MassDEP) drinking water standard = Maximum Contaminant Level (MCL)

- Pregnant women
- Nursing women
- Infants
- Compromised Immune Systems
- MassDEP recommends individuals from sensitive populations avoid consuming water with PFAS6 above the MCL
- CWD has not had a PFAS6 MCL exceedance

PFAS Drinking Water Regulations

- Currently No Federal Standard
- EPA Health Advisory Level = 70 ppt
- EPA "PFAS Strategic Roadmap" announced October 2021
- Proposed rule Fall 2022
- Final rule Fall 2023

What are the health risks related to PFAS?

 Consuming water with PFAS above the recommended limits does NOT mean that adverse effects will occur.

RISK DEPENDS ON:

- How much PFAS is in the water
- Which PFAS chemicals are present in the water
- How long you are exposed to the water
- Potential links between high levels of PFAS exposure and negative health effects:
 - Increased cholesterol
 - Changes in liver enzymes
 - Small decreases in birth weights or vaccine response in children
 - High blood pressure or pre-eclampsia in pregnant women
 - Increased risk of certain cancers

This is a National Issue: Monitoring for PFAS in Public Drinking Water Systems

https://www.ewg.org/interactive-maps/pfas contamination/map/ Accessed 11/12/21

Cambridge PFAS results

Cambridge PFAS results

Below, is an example of PFAS data that appears on the City's web page for 2021

Updated: 02/09/22

Cambridge Water Department Per- and Polyfluoroalkyl Substances (PFAS) Montoring - Analytes detected

Entry Point to the Distribution System (EPDS) aka Finish Water

Compound Name	1/6/2021 ng/L (ppt)	2/3/2021 ng/L (ppt)	3/29/2021 ng/L (ppt)	4/1/2021 ng/L (ppt)	5/3/2021 ng/L (ppt)	6/2/2021 ng/L (ppt)	7/7/2021 ng/L (ppt)	8/4/2021 ng/L (ppt)	9/1/2021 ng/L (ppt)	10/4/2021 ng/L (ppt)	n/a ng/L (ppt)	12/20/2021 ng/L (ppt)
Perfluorooctane Sulfonic Acid (PFOS)	1.7	1.7	1.9	2.2	2.4	3.0	4.3	4.3	4.7	3.5	n/a	2.40
Perfluorooctanoic Acid (PFOA)	6.9	6	8.5	7.9	6.8	7.8	7.9	8.3	9.6	8.5	n/a	7.65
Perfluorohexane Sulfonic Acid (PFHxS)	2.1	2.3	3.03	3.57	2.5	3	2.8	2.9	3	2.9	n/a	3.10
Perfluorononanoic Acid (PFNA)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	n/a	0.00
Perfluorohepatanoic Acid (PFHpA)	3.2	3	2.4	3.4	2.3	2.9	2.9	3	3.4	2.9	n/a	3.15
Perfluorodecanoic acid (PFDA)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	n/a	0.00
Sum ofPFAS6	12.2	11.3	15.8	17.1	14.0	16.7	17.9	18.5	20.7	17.8	n/a	16.30
Quarterly Compliance Average	13.1			15.9			19.0			17.1		

ng/L = nanograms per Liter or ppt, parts per trillion

2.0 ng/L Minimum Reporting Limit (MRL) The lowest quantitated value for a target analyte in a sample.

Typically the lowest calibration standard used.

^{*} November data lost by contract lab

^{**} December data is avarage of two samples collected in December (Pace Lab and Eurofin Lab)

Cambridge PFAS results 2022

Updated: 4/12/22

Cambridge Water Department Per- and Polyfluoroalkyl Substances (PFAS) Montoring - Analytes detected Entry Point to the Distribution System (EPDS) aka Finish Water

	MasDEP MCL	1/5/2022	2/2/2022	3/1/2022	4/4/2022	
Compound Name		ng/L (ppt)	ng/L (ppt)	ng/L (ppt)	ng/L (ppt)	
Perfluorooctane Sulfonic Acid (PFOS)	X	2.2	2.0	2.1	1.9	
Perfluorooctanoic Acid (PFOA)	X	6.7	5.7	6.2	8.0	
Perfluorohexane Sulfonic Acid (PFHxS)	X	2.5	2.1	2.4	2.4	
Perfluorononanoic Acid (PFNA)	X	0.0	0.0	0.0	0.0	
Perfluorohepatanoic Acid (PFHpA)	X	2.2	1.9	2.6	2.7	
Perfluorodecanoic acid (PFDA)	X	0.0	0.0	0.0	0.0	
Sum of PFAS6 detected		13.6	11.7	13.3	15.0	
Quarterly Compliand	12.9				dV.	

ng/L = nanograms per Liter or ppt, parts per trillion

2.0 ng/L Minimum Reporting Limit (MRL) The lowest quantitated value for a target analyte in a sample. Typically the lowest calibration standard used. Where's our PFAS coming from?

Updated 3-16-2022

PFAS Treatment for Drinking Water

PFAS Treatment for Drinking Water

Available technologies for PFAS removal:

Most Suitable Treatment Option for Cambridge

Granular Activated Carbon (GAC)

✓ Water quality (e.g., low organics)

Anion Exchange (AIX)

Compatible with existing treatment

High Pressure Membranes

- City's familiarity with GAC operation
- Comparatively lower cost

What does that mean for CWD?

- Cambridge has been in full compliance with state and federal regulations since we started PFAS sampling.
- CWD performed a pilot study focusing on 3 different Granular Activated Carbon (GAC) medias to reduce PFAS in our finished water.
- Recommendations to remain in compliance and to reduce our values to be consistently under 10ppt
 - replacing the 20+ year-old granular activated carbon(GAC) filter media on a regular basis

Granular Activated Carbon Treatment Facility Filters

 Granular activated carbon is made from organic materials with high carbon contents such as:

- Filtering with granular activated carbon(GAC) is the most common form of treatment used for PFAS removal.
- Activated carbon is commonly used to adsorb:

natural organic compounds taste and odor compounds synthetic organic chemicals

PFAS Timeline

- ✓ August 2019, CWD began proactively monitoring the drinking water at Fresh Pond.
- ✓ August 2020 CWD began testing alternative types of GAC media
- ✓ October 2020 MassDEP enacted a standard of 20 parts per trillion (ppt) for the sum of six PFAS (PFAS6) compounds
- ✓ Results indicated that replacing the GAC filter media is expected to reduce PFAS by 50% or more
- ✓ Project design & Bid specifications complete
- ✓ Advertised in the Cambridge Chronicle on Thursday, March 24, 2022
- ✓ Invitation for bid prior to: 11:00 a.m. on Thursday, April 7, 2022
- ✓ Calgon only bidder
- ✓ Calgon contract issued awaiting final signatures and contract
- Projected work towards replacement of the media to start June 2022
- Expected completion September 2022

Questions/Discussion

Thank you and good night!